Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.10.20236943

ABSTRACT

ImportanceSARS-CoV-2 genomic variants impacts the overall sensitivity of COVID-19 diagnosis, leading to false-negative diagnosis and the continued spread of the virus. ObjectiveTo evaluate how nucleotide variability in target primer binding sites of the SARS-CoV-2 genomes may impact diagnosis using different recommended primer/probe sets, as well as to suggest the best primer/probes for diagnosis. DesignWe downloaded 105,118 public SARS-CoV-2 genomes from GISAID (Sept, 25th, 2020), removed genomes of apparent worst quality (genome length <29kb and/or >5% ambiguous bases) and missing metadata, and performed an analysis of complementarity for the 13 most used diagnostic primers/probe sets for RT-PCR detection. We calculated the N rate and % of genome recovery, with all primer/probe-sets considering viral origin and clade. Results: Our findings indicate that currently, the Paris_nCoV-IP2, -IP4 and WHO|E_Sarbeco primer/probe sets for COVID-19, to perform the best diagnostically worldwide, recovering >99.5% of the good quality SARS-CoV-2 genomes from GISAID, with no mismatches. The Chinese_CDC|2019-nCoV-NP primer/probe set, among the first to be designed during the pandemic, was the most susceptible to currently most abundant SARS-CoV-2 variants. Mismatches encompassing the binding sites for this set are more frequent in Clade-GR and are highly prevalent in over 30 countries globally, including Brazil and India, two of the hardest hit countries. Conclusions: Detection of SARS-CoV-2 in patients may be hampered by significant variability in parts of the viral genome that are targeted by some widely used primer sets. The geographic distribution of different viral clades indicates that continuous assessment of primer sets via sequencing-based surveillance and viral evolutionary analysis is critical to accurate diagnostics. This study highlights sequence variance in target regions that may reduce the efficiency of primer:target hybridization that in turn may lead to the undetected spread of the virus. As such, due to this variance, the Chinese_CDC|2019-nCoV-NP-set should be used with caution, or avoided, especially in countries with high prevalence of the GR clade. Key Points QuestionHow variable are the binding-sites of primers/probes used for COVID-19 diagnosis? FindingsWe investigated nucleotide variations in primer-binding sites used for COVID-19 diagnosis, in 93,143 SARS-CoV-2 genomes, and found primer sets targeting regions of increasingly nucleotide variance over time, such as the Chinese_CDC|2019-nCoV-NP. The frequency of these variations is higher in Clade-GR whose frequency is increasing worldwide. Paris_nCoV-IP2, IP4 and WHO|E_Sarbeco performed best. MeaningWe suggest the use of some sets to be halted and reinforce the importance of a continuous surveillance of SARS-CoV-2 variations to prompt the use of the best primers.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.16.20172668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted from person to person through inhalation of droplets or aerosols, laden with viral particles. However, as some studies have shown, virions can remain infectious for up to 72 hours on surfaces, which can lead to transmission through contact. For this reason, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination of monitoring SARS-CoV-2 on surfaces include using an Isohelix swab as a collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, SARS-CoV-2 viral standards were still recovered from surfaces as detected by RT-qPCR for as long as eight days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to negatively impact the recovery of RNA, with Amerstat inhibition as high as 90% when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. When this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay. ImportanceThe ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019; COVID-19) pandemic has led to a global slow down with far reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown virions can remain infectious on surfaces for days, and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination of monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL